Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712993

RESUMEN

Magnetic skyrmions are topologically protected, nanoscale whirls of the spin configuration that tend to form hexagonally ordered arrays. As a topologically non-trivial structure, the nucleation and annihilation of the skyrmion, as well as the interaction between skyrmions, varies from conventional magnetic systems. Recent works have suggested that the ordering kinetics in these materials occur over millisecond or longer timescales, which is unusually slow for magnetic dynamics. The current work investigates the skyrmion ordering kinetics, particularly during lattice formation and destruction, using time-resolved small angle neutron scattering (TR-SANS). Evaluating the time-resolved structure and intensity of the neutron diffraction pattern reveals the evolving real-space structure of the skyrmion lattice and the timeframe of the formation. Measurements were performed on three prototypical skyrmion materials: MnSi, (Fe,Co)Si, and Cu2OSeO3. To probe lattice formation and destruction kinetics, the systems were prepared in the stable skyrmion state, and then a square-wave magnetic field modulation was applied. The measurements show that the skyrmions quickly form ordered domains, with a significant distribution in lattice parameters, which then converge to the final structure; the results confirm the slow kinetics, with formation times between 10 ms and 99 ms. Comparisons are made between the measured formation times and the fundamental material properties, suggesting the ordering temperature, saturation magnetization and magnetocrystalline anisotropy may be driving the timeframes. Micromagnetic simulations were also performed and support a scaling of the kinetics with sample volume, a behavior which is caused by the reconciling of misaligned domains.

2.
Dalton Trans ; 53(15): 6592-6600, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38375683

RESUMEN

The magnetic structure of K2Co3(MoO4)3(OH)2 is studied in detail. The material has a half-sawtooth one-dimensional (1-D) structure containing two unique Co2+ ions, one in the chain backbone and one on the apex of the sawtooth creating a series of isosceles triangles along the b-axis. These triangles can be a source of magnetic frustration. The ability to grow large single crystals enables detailed magnetic measurements with the crystals oriented in a magnetic field along the respective axes. It has a Curie-Weiss temperature θCW of 5.3(2) K with an effective magnetic moment of 4.8(3)µB/Co. The material is highly anisotropic with a sharp antiferromagnetic ordering transition at 7 K with a metamagnetic transition at 2 kOe. Neutron diffraction was used to determine the magnetic structure and revealed a magnetic structure with canted spins along the backbone of the chain while spins along the sawtooth caps maintained a colinear orientation, arranging antiferromagnetically relative to the backbone spins. The parallel chains arrange antiferromagnetically relative to each other along the c-axis and ferromagnetically along the a-axis.

3.
Adv Mater ; 35(33): e2300416, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37139924

RESUMEN

Magnetic skyrmions exhibit unique, technologically relevant pseudo-particle behaviors which arise from their topological protection, including well-defined, 3D dynamic modes that occur at microwave frequencies. During dynamic excitation, spin waves are ejected into the interstitial regions between skyrmions, creating the magnetic equivalent of a turbulent sea. However, since the spin waves in these systems have a well-defined length scale, and the skyrmions are on an ordered lattice, ordered structures from spin-wave interference can precipitate from the chaos. This work uses small-angle neutron scattering (SANS) to capture the dynamics in hybrid skyrmions and investigate the spin-wave structure. Performing simultaneous ferromagnetic resonance and SANS, the diffraction pattern shows a large increase in low-angle scattering intensity, which is present only in the resonance condition. This scattering pattern is best fit using a mass fractal model, which suggests the spin waves form a long-range fractal network. The fractal structure is constructed of fundamental units with a size that encodes the spin-wave emissions and are constrained by the skyrmion lattice. These results offer critical insights into the nanoscale dynamics of skyrmions, identify a new dynamic spin-wave fractal structure, and demonstrate SANS as a unique tool to probe high-speed dynamics.

4.
Materials (Basel) ; 16(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36836980

RESUMEN

Thorium was a part of energy infrastructure in the 19th century due to the refractory and electronic properties of its dioxide. It will be a part of future energy infrastructure as the most abundant energy reserve based on nuclear fission. This paper discusses the solid-state chemistry of the monoxides and related rocksalt phases of thorium and the rare earths, both at atmospheric and at high pressure. The existence of solid thorium monoxide was first suggested more than 100 years ago; however, it was never obtained in bulk and has been studied mostly theoretically. Monoxides of lanthanides from Eu to Ho are ferromagnetic semiconductors sought for spintronics and were studied in thin films. La to Sm metallic monoxides were synthesized in bulk at pressures below 5 GPa. Recently, ThO formation in thin films has been reported and the stability of bulk ThO at high pressure was theoretically predicted based on first principles computations at 0 K. New ab initio computations were performed accounting for temperature effects up to 1000 K using lattice dynamics in the quasi-harmonic approximation. New computational results confirm the stabilization of pure ThO above 30 GPa and suggest the possibility of high-pressure synthesis of (Th,Nd)O at 1000 K and 5 GPa.

5.
Sci Rep ; 12(1): 21427, 2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36503913

RESUMEN

High traffic touch surfaces such as doorknobs, countertops, and handrails can be transmission points for the spread of pathogens, emphasizing the need to develop materials that actively self-sanitize. Metals are frequently used for these surfaces due to their durability, but many metals also possess antimicrobial properties which function through a variety of mechanisms. This work investigates metallic alloys comprised of several metals which individually possess antimicrobial properties, with the target of achieving broad-spectrum, rapid sanitation through synergistic activity. An entropy-motivated stabilization paradigm is proposed to prepare scalable alloys of copper, silver, nickel and cobalt. Using combinatorial sputtering, thin-film alloys were prepared on 100 mm wafers with ≈50% compositional grading of each element across the wafer. The films were then annealed and investigated for alloy stability. Antimicrobial activity testing was performed on both the as-grown alloys and the annealed films using four microorganisms-Phi6, MS2, Bacillus subtilis and Escherichia coli-as surrogates for human viral and bacterial pathogens. Testing showed that after 30 s of contact with some of the test alloys, Phi6, an enveloped, single-stranded RNA bacteriophage that serves as a SARS-CoV-2 surrogate, was reduced up to 6.9 orders of magnitude (> 99.9999%). Additionally, the non-enveloped, double-stranded DNA bacteriophage MS2, and the Gram-negative E. coli and Gram-positive B. subtilis bacterial strains showed a 5.0, 6.4, and 5.7 log reduction in activity after 30, 20 and 10 min, respectively. Antimicrobial activity in the alloy samples showed a strong dependence on the composition, with the log reduction scaling directly with the Cu content. Concentration of Cu by phase separation after annealing improved activity in some of the samples. The results motivate a variety of themes which can be leveraged to design ideal antimicrobial surfaces.


Asunto(s)
Antiinfecciosos , COVID-19 , Humanos , Aleaciones/farmacología , Escherichia coli , SARS-CoV-2 , Antiinfecciosos/farmacología
6.
Nano Lett ; 22(24): 10010-10017, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36480011

RESUMEN

Interconnected magnetic nanowire (NW) networks offer a promising platform for three-dimensional (3D) information storage and integrated neuromorphic computing. Here we report discrete propagation of magnetic states in interconnected Co nanowire networks driven by magnetic field and current, manifested in distinct magnetoresistance (MR) features. In these networks, when only a few interconnected NWs were measured, multiple MR kinks and local minima were observed, including a significant minimum at a positive field during the descending field sweep. Micromagnetic simulations showed that this unusual feature was due to domain wall (DW) pinning at the NW intersections, which was confirmed by off-axis electron holography imaging. In a complex network with many intersections, sequential switching of nanowire sections separated by interconnects was observed, along with stochastic characteristics. The pinning/depinning of the DWs can be further controlled by the driving current density. These results illustrate the promise of such interconnected networks as integrated multistate memristors.

7.
ACS Appl Mater Interfaces ; 14(13): 15047-15058, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35333040

RESUMEN

The chemical composition and morphology of AuxCo1-x thin films and nanoparticles are controlled via a combination of cosputtering, pulsed laser-induced dewetting (PLiD), and annealing, leading to tunable magnetic and optical properties. Regardless of chemical composition, the as-deposited thin films and as-PLiD nanoparticles are found to possess a face-centered cubic (FCC) AuxCo1-x solid-solution crystal structure. Annealing results in large phase-separated grains of Au and Co in both the thin films and nanostructures for all chemical compositions. The magnetic and optical properties are characterized via vibrating sample magnetometry (VSM), ellipsometry, optical transmission spectroscopy, and electron energy loss spectroscopy (EELS). Despite the exceptionally high magnetic anisotropy inherent to Co, the presence of sufficient Au (72 atom %) in the AuxCo1-x solid solution results in superparamagnetic thin films. Among the as-PLiD nanoparticle samples, an increased Co composition leads to a departure from traditional ferromagnetism in favor of wasp-waisted hysteresis caused by magnetic vortices. Phase separation resulting from annealing leads to ferromagnetism for all compositions in both the thin films and nanoparticles. The optical properties of AuxCo1-x nanostructures are also largely influenced by the chemical morphology, where the AuxCo1-x intermixed solid solution has significantly damped plasmonic performance relative to pure Au and comparable to pure Co. Phase separation greatly enhances the quality factor, optical absorption, and electron energy loss spectroscopy (EELS) signatures. The enhancement of the localized surface plasmon resonances (LSPRs) scales with the reduction in Co composition, despite EELS evidence that excitation of the Co portions of a nanoparticle can provide a similar, and in some instances enhanced, LSPR resonance compared to Au. This behavior, however, is seemingly limited to the LSPR dipole mode, while higher-order modes are greatly damped by a Co aloof position. This observed magneto-plasmonic functionality and tunability could be applicable in biomedicine, namely, cancer therapeutics.

8.
Small ; 18(5): e2101323, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34825472

RESUMEN

The configurational complexity and distinct local atomic environments of high entropy oxides remain largely unexplored, leaving structure-property relationships and the hypothesis that the family offers rich tunability for applications ambiguous. This work investigates the influence of cation size and materials synthesis in determining the resulting structure and magnetic properties of a family of high entropy rare-earth zirconates (HEREZs, nominal composition RE2 Zr2 O7 with RE = rare-earth element combinations including Eu, Gd, Tb, Dy, Ho, La, or Sc). The structural characterization of the series is examined through synchrotron X-ray diffraction and pair distribution function analysis, and electron microscopy, demonstrating average defect-fluorite structures with considerable local disorder, in all samples. The surface morphology and particle sizes are found to vary significantly with preparation method, with irregular micron-sized particles formed by high temperature sintering routes, spherical nanoparticles resulting from chemical co-precipitation methods, and porous nanoparticle agglomerates resulting from polymer steric entrapment synthesis. In agreement with the disordered cation distribution found across all samples, magnetic measurements indicate that all synthesized HEREZs show frustrated magnetic behavior, as seen in a number of single-component RE2 Zr2 O7 pyrochlore oxides. These findings advance the understanding of the local structure of high entropy oxides and demonstrate strategies for designing nanostructured morphologies in the class.

9.
Sci Rep ; 11(1): 4018, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597639

RESUMEN

The first order reversal curve (FORC) method is a magnetometry based technique used to capture nanoscale magnetic phase separation and interactions with macroscopic measurements using minor hysteresis loop analysis. This makes the FORC technique a powerful tool in the analysis of complex systems which cannot be effectively probed using localized techniques. However, recovering quantitative details about the identified phases which can be compared to traditionally measured metrics remains an enigmatic challenge. We demonstrate a technique to reconstruct phase-resolved magnetic hysteresis loops by selectively integrating the measured FORC distribution. From these minor loops, the traditional metrics-including the coercivity and saturation field, and the remanent and saturation magnetization-can be determined. In order to perform this analysis, special consideration must be paid to the accurate quantitative management of the so-called reversible features. This technique is demonstrated on three representative materials systems, high anisotropy FeCuPt thin-films, Fe nanodots, and SmCo/Fe exchange spring magnet films, and shows excellent agreement with the direct measured major loop, as well as the phase separated loops.

10.
Nano Lett ; 21(1): 716-722, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33301687

RESUMEN

Free-standing, interconnected metallic nanowire networks with densities as low as 40 mg/cm3 have been achieved over centimeter-scale areas, using electrodeposition into polycarbonate membranes that have been ion-tracked at multiple angles. Networks of interconnected magnetic nanowires further provide an exciting platform to explore 3-dimensional nanomagnetism, where their structure, topology, and frustration may be used as additional degrees of freedom to tailor the materials properties. New magnetization reversal mechanisms in cobalt networks are captured by the first-order reversal curve method, which demonstrate the evolution from strong demagnetizing dipolar interactions to intersection-mediated domain wall pinning and propagation, and eventually to shape-anisotropy dominated magnetization reversal. These findings open up new possibilities for 3-dimensional integrated magnetic devices for memory, complex computation, and neuromorphics.

11.
Sci Adv ; 6(33): eaaz8463, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32851159

RESUMEN

This work reports the ferromagnetism of topological insulator, (Bi,Sb)2Te3 (BST), with a Curie temperature of approximately 120 K induced by magnetic proximity effect (MPE) of an antiferromagnetic CrSe. The MPE was shown to be highly dependent on the stacking order of the heterostructure, as well as the interface symmetry: Growing CrSe on top of BST results in induced ferromagnetism, while growing BST on CrSe yielded no evidence of an MPE. Cr-termination in the former case leads to double-exchange interactions between Cr3+ surface states and Cr2+ bulk states. This Cr3+-Cr2+ exchange stabilizes the ferromagnetic order localized at the interface and magnetically polarizes the BST Sb band. In contrast, Se-termination at the CrSe/BST interface yields no detectable MPE. These results directly confirm the MPE in BST films and provide critical insights into the sensitivity of the surface state.

12.
ACS Omega ; 5(30): 19285-19292, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32775932

RESUMEN

Pulsed laser-induced dewetting (PLiD) of Ag0.5Ni0.5 thin films results in phase-separated bimetallic nanoparticles with size distributions that depend on the initial thin film thickness. Co-sputtering of Ag and Ni is used to generate the as-deposited (AD) nanogranular supersaturated thin films. The magnetic and optical properties of the AD thin films and PLiD nanoparticles are characterized using a vibrating sample magnetometer, optical absorption spectroscopy, and electron energy loss spectroscopy (EELS). Magnetic measurements demonstrate that Ag0.5Ni0.5 nanoparticles are ferromagnetic at room temperature when the nanoparticle diameters are >20 nm and superparamagnetic <20 nm. Optical measurements show that all nanoparticle size distributions possess a local surface plasmon resonance (LSPR) peak that red-shifts with increasing diameter. Following PLiD, a Janus nanoparticle morphology is observed in scanning transmission electron microscopy, and low-loss EELS reveals size-dependent Ag and Ni LSPR dipole modes, while higher order modes appear only in the Ag hemisphere. PLiD of Ag-Ni thin films is shown to be a viable technique to generate bimetallic nanoparticles with both magnetic and plasmonic functionality.

13.
Adv Mater ; 32(34): e2001460, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32691882

RESUMEN

Integration of a quantum anomalous Hall insulator with a magnetically ordered material provides an additional degree of freedom through which the resulting exotic quantum states can be controlled. Here, an experimental observation is reported of the quantum anomalous Hall effect in a magnetically-doped topological insulator grown on the antiferromagnetic insulator Cr2 O3 . The exchange coupling between the two materials is investigated using field-cooling-dependent magnetometry and polarized neutron reflectometry. Both techniques reveal strong interfacial interaction between the antiferromagnetic order of the Cr2 O3 and the magnetic topological insulator, manifested as an exchange bias when the sample is field-cooled under an out-of-plane magnetic field, and an exchange spring-like magnetic depth profile when the system is magnetized within the film plane. These results identify antiferromagnetic insulators as suitable candidates for the manipulation of magnetic and topological order in topological insulator films.

15.
Nat Nanotechnol ; 15(6): 482-490, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32451501

RESUMEN

Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T1-based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T1 and T2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Medios de Contraste/análisis , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Nanopartículas/análisis , Animales , Encéfalo/diagnóstico por imagen , Humanos , Aumento de la Imagen/métodos , Ratones , Micelas , Nanotecnología/métodos
16.
Sci Adv ; 6(15): eaay0114, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32300646

RESUMEN

Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO3 monolayers by inducing a spin reorientation in (SrRuO3)1/(SrTiO3) N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial 〈001〉 direction (N < 3) to eightfold 〈111〉 directions (N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO3. First-principle calculations reveal that increasing the SrTiO3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications.

17.
Nat Commun ; 11(1): 2023, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332726

RESUMEN

The Seebeck effect converts thermal gradients into electricity. As an approach to power technologies in the current Internet-of-Things era, on-chip energy harvesting is highly attractive, and to be effective, demands thin film materials with large Seebeck coefficients. In spintronics, the antiferromagnetic metal IrMn has been used as the pinning layer in magnetic tunnel junctions that form building blocks for magnetic random access memories and magnetic sensors. Spin pumping experiments revealed that IrMn Néel temperature is thickness-dependent and approaches room temperature when the layer is thin. Here, we report that the Seebeck coefficient is maximum at the Néel temperature of IrMn of 0.6 to 4.0 nm in thickness in IrMn-based half magnetic tunnel junctions. We obtain a record Seebeck coefficient 390 (±10) µV K-1 at room temperature. Our results demonstrate that IrMn-based magnetic devices could harvest the heat dissipation for magnetic sensors, thus contributing to the Power-of-Things paradigm.

18.
Phys Rev B ; 102(13)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37731841

RESUMEN

Magnetic skyrmions have been the focus of intense research due to their unique qualities which result from their topological protections. Previous work on Cu2OSeO3, the only known insulating multiferroic skyrmion material, has shown that chemical substitution alters the skyrmion phase. We chemically substitute Zn, Ag, and S into powdered Cu2OSeO3 to study the effect on the magnetic phase diagram. In both the Ag and the S substitutions, we find that the skyrmion phase is stabilized over a larger temperature range, as determined via magnetometry and small-angle neutron scattering (SANS). Meanwhile, while previous magnetometry characterization suggests two high temperature skyrmion phases in the Zn-substituted sample, SANS reveals the high temperature phase to be skyrmionic while we are unable to distinguish the other from helical order. Overall, chemical substitution weakens helical and skyrmion order as inferred from neutron scattering of the q≈0.01Å-1 magnetic peak.

19.
ACS Appl Mater Interfaces ; 12(4): 4741-4748, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31880904

RESUMEN

Solid-state ionic approaches for modifying ion distributions in getter/oxide heterostructures offer exciting potentials to control material properties. Here, we report a simple, scalable approach allowing for manipulation of the superconducting transition in optimally doped YBa2Cu3O7-δ (YBCO) films via a chemically driven ionic migration mechanism. Using a thin Gd capping layer of up to 20 nm deposited onto 100 nm thick epitaxial YBCO films, oxygen is found to leach from deep within the YBCO. Progressive reduction of the superconducting transition is observed, with complete suppression possible for a sufficiently thick Gd layer. These effects arise from the combined impact of redox-driven electron doping and modification of the YBCO microstructure due to oxygen migration and depletion. This work demonstrates an effective step toward total ionic tuning of superconductivity in oxides, an interface-induced effect that goes well into the quasi-bulk regime, opening-up possibilities for electric field manipulation.

20.
Nat Mater ; 18(1): 7-8, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30542095
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...